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I. INTRODUCTION 

 
Imagine that we have a collection of conducting objects in a 
region under electrostatic equilibrium.  We impose a Dirichlet 
boundary condition by assigning to each object a potential 
voltage.  We solve for the charge distribution that satisfies the 
boundary condition by using variant of the Poisson equation.  
There are only a few cases where we can do this by hand; a 
variety of numerical techniques are used for everything else. 
     We use the Method of Moments as described by 
Harrington to approximate the charge distribution [1].  We 
discretize the surfaces of the objects into a finite collection of 
geometric elements.  Each geometric element has a known 
potential voltage (determined by the boundary condition) and 
an unknown charge.  We solve for the unknown charges by 
defining and solving a system of linear equations.  In other 
words, we want to solve the matrix equation, Aρ = V, where A 
is the coefficient matrix, ρ is the unknown charge distribution, 
and V is the specified boundary condition.  Note that the 
coefficient matrix is dependent only on the geometry of the 
model.  We can compute ρ as ρ = A-1V. 
     We are free to let the objects move and the boundary 
condition change.  We solve for the charge distribution at a 
series of discrete time steps [2].  In general, we can no longer 
assume electrostatic equilibrium because the moving charge 
distribution produces magnetic fields.  However, in practice, if 
the objects are moving slowly enough and the boundary 
condition is changing slowly enough, the intensity of the 
induced magnetic fields is small enough that we can safely 
ignore them.  Under this simplifying assumption, we create 
and compute a time series of quasistatic frames.  We put these 
frames together to produce a dynamic electric field model. 
     As the complexity of models increases, so does the time 
needed to compute them.  In fact, the time required to compute 
a single frame of a dynamic model is proportional to the cube 
of the number of elements in the frame.  This paper introduces 
a technique based on the Principle of Superposition that 
reduces the amount of time needed to compute large dynamic 
models with many frames. 
 

II. MATHEMATICAL FRAMEWORK 
 
Imagine that we have a collection of models that have the 
same geometry, and therefore the same coefficient matrix, A, 
but different boundary conditions, V1, V2, �, Vn, and we have 
solved for their corresponding charge distributions, ρ1, ρ2, �, 
ρn.  We assume that V1, V2, �, Vn are linearly independent.  
Now consider another model that has the same geometry, and 
therefore the same coefficient matrix, A, as the other models, 
but a different boundary condition, V, and we want to solve 
for its charge distribution, ρ. 

     For real numbers, a1, a2, �, an, if we can write V as V = 
a1V1 + a2V2 + � + anVn, then ρ = a1ρ1 + a2ρ2 + � + anρn.  
The proof of this is below. 
 
ρ = A-1V 
ρ = A-1(a1V1 + a2V2 + � + anVn) 
ρ = a1A-1V1 + a2A-1V2 + � + anA-1Vn 
ρ = a1ρ1 + a2ρ2 + � + anρn 
 
     We take advantage of this fact by creating and computing a 
collection of basis models.  Note that all of the basis models 
must have the same geometry.  The span of the basis models 
yields a model space, and every model in the model space is 
implicitly computed once the basis models are computed. 
     Now consider a model with a finite number of conducting 
objects.  Suppose that we want there to be a specific total 
charge on one or several of the objects.  We can use the 
already established facts about basis models to do this as well.  
Let V1, V2, �, VN be the potential voltage on each of the 
objects and Q1, Q2, �, QN be the total charge on each of the 
objects.  In addition, we create and compute a basis model for 
each object in the model.  We compute the total charge on 
each of the objects in each of the basis models to be Qi,j, where 
i is the object and j is the basis model.  Let (a1, a2, �, an) be 
the coordinate of the original model in the model space.  The 
following system of linear equations holds. 
 
a1Q1,1 + a2Q1,2 + � + anQ1,n = Q1 
a1Q2,1 + a2Q2,2 + � + anQ2,n = Q2 

� 
a1Qn,1 + a2Qn,2 + � + anQn,n = Qn 
 
     This allows us to specify a combination of potential 
voltages and total charges as the boundary condition.  We can 
use the system of linear equations to transform the mixed 
boundary condition into one in terms of just potential voltages.  
We can then use the basis models to compute the charge 
distribution. 
     The use of basis models provides significant savings in 
computation time when working with large dynamic models.  
They provide other benefits as well.  We can study the precise 
relationship between the source voltages and their resulting 
electric fields.  In addition, we can create extremely high 
resolution dynamic models (to the point of deriving an 
analytic expression for the electric field at any point in time). 
 

III. FIRST CASE STUDY: POWER LINES 
 
We will use a detailed line segment model of a typical section 
of distribution power lines.  We use line segments as the 
geometric elements in our models because they are good at 



 
Fig. 1. Line segment model of power lines looking north 

 
modeling rectangular objects, wires, and flat (or nearly flat) 
surfaces.  In addition, we treat everything in our model as 
perfect electrical conductors.  We can do this because both the 
voltage gradients on the wire conductors due to power currents 
and on the ground and power poles due to induced currents are 
small enough compared to the boundary condition that we can 
safely ignore them.  The model is composed of three distinct 
components: the ground plane, the power poles, and the power 
lines (see Fig. 1).  The line segments that make up the ground 
plane are more densely packed near the power poles and under 
the power lines because the electric field changes more rapidly 
in these areas.  The power poles are modeled as a hexagonal 
rods and the cross bars are modeled as three dimensional 
rectangles.  This allows us to see the effects of the electric 
field on different sides of the power poles.  The power lines 
are modeled as a sequence of line segments laid head to tail.  
The line segments that make up the power lines are more 
densely packed near the cross bars to reduce any modeling 
artifacts.  All dimensions of the model are accurate within a 
few centimeters. 
 
     A. Basis Models 
 
     There are two distinct sets of power lines in the model.  We 
will operate only the west set of power lines and turn off the 
east set of power lines.  The west set of power lines is 
composed of three individual wires, which we will identify as 
wires A, B, and C.  We will construct a basis model for each 
one.  That is, for each wire, we will create a model and ground 
everything except that wire.  We then assign to that wire a 
potential voltage of 1 V.  We will identify them as basis 
models A, B, and C. 
 
     B. Point of Computation 
 
     We want to compute the electric field at an arbitrary point 
along the ground as the voltages on the power lines oscillate 
over time.  In this example, the point of computation is on the 
ground twenty meters south east of the center power pole.  We 
need to compute the electric field at the point of computation 
in each of the three basis models.  We do this by interrogating 
the model for the surface charge density, D, of the element  

 
Fig. 2. Line voltages 

 
that exists at the point of computation.  We compute E as E = 
D/ε. 
 
EA,BASIS = �2.6698 mV/m 
EB,BASIS = �2.3406 mV/m 
EC,BASIS = �2.7577 mV/m 
 
     We can use these to compute the electric field at the point 
of computation for any combination of the line voltages.  As 
an example, if the line voltages of lines A, B, and C are 18668 
V, �9334 V, and �9934 V, respectively, then ETOTAL = 
18668EA,BASIS � 9334EB,BASIS � 9334VCEC,BASIS = �2.2521 
V/m. 
 
     C. The Experiment 
 
     We will choose the line voltages to mimic those on a set of 
ideal, three-phase, 13.2-kV, 60-Hz power lines.  The line 
voltages are given by the following expressions (see Fig. 2). 
 
VA(t) = (18668 V)cos(2π(60 Hz)t) 
VB(t) = (18668 V)cos(2π(60 Hz)t � 2π/3) 
VC(t) = (18668 V)cos(2π(60 Hz)t � 4π/3) 
 
     We need to compute the coordinate, (a(t), b(t), c(t)), of the 
model in the model space as the line voltages oscillate.  This is 
trivial because we selected the potential voltages in the basis 
models to be 1 V. 
 
a(t) = VA(t) / (1 V) 
b(t) = VB(t) / (1 V) 
c(t) = VC(t) / (1 V) 
 
     We compute the electric field at the point of computation 
due to each line.  We then add these together to compute the 
total electric field at the point of computation (see Fig. 3). 
 
EA(t) = a(t)EA,BASIS 
EA(t) = (-49.8395 V/m)cos(2π(60 Hz)t) 
 



 
Fig. 3. Resulting electric fields 

 
EB(t) = b(t)EB,BASIS 
EB(t) = (-43.6938 V/m)cos(2π(60 Hz)t � 2π/3) 
 
EC(t) = c(t)EC,BASIS 
EC(t) = (-51.4812 V/m)cos(2π(60 Hz)t � 4π/3) 
 
ETOT(t) = EA(t) + EB(t) + EC(t) 
ETOT(t) = (7.1101 V/m)cos(2π(60 Hz)t � 1.8931) 
 
     Notice that the total electric field has a significantly lower 
amplitude and different phase angles than the individual 
component electric fields. 
 

IV. SECOND CASE STUDY: HUMAN WALKING 
 
We want to study the behavior of the electric field around a 
human as he walks along a straight path.  We will use a 
dynamic model made of a time series of frames that shows the 
human walking.  Each frame is composed of three parts: the 
ground plane, the sky plane, and the human.  The sky plane 
allows us to model a vertical ambient field, such as the fair 
weather field of Earth.  The ground and the sky are made from 
a dense grid of line segments.  The length and width of the 
ground and the sky are the same and are large compared the 
distance between them.  This is to reduce any fringing effects 
near the center of the ground where the human is walking.  
The human is modeled as a wireframe conductor and its 
position changes from frame to frame as the model walks.  We 
want to look at three cases: (a) the human is grounded in a 
vertical ambient electric field; (b) the human is charged in no 
vertical ambient electric field; and (c) the human is charged in 
a vertical ambient electric field. 
 
     A. Basis Models 
 
     We will construct two basis models for each frame in the 
dynamic model.  In the first basis model, we will assign to the 
ground and to the human a potential voltage of 0 V and to the 
sky a potential voltage of 1 V.  In the second basis model, we 
will assign to the ground and to the sky a potential voltage of 0 
V and to the human a potential voltage of 1 V.  We then 

compute the solutions to both of these boundary value 
problems.  We will identify the solutions as basis models A 
and B.  After computing them, we need to interrogate them for 
a few pieces of information.  Let QA be the total charge on the 
human in basis model A and QB be the total charge on the 
human in basis model B. 
 
     B. Producing a Vertical Ambient Electric Field 
 
     To produce a vertical ambient electric field, we assign the 
sky a potential voltage, VSKY.  We can compute VSKY as VSKY = 
Ed, where E is the desired electric field intensity and d is the 
distance between the sky and the ground.  Note that E ≤ VSKY/d 
due to fringing effects.  We can minimize this error by making 
sure the distance between the ground and the sky is small 
compared to the area of both.  Note that VSKY = 0 V for zero 
vertical ambient electric field.  Also note that VSKY is 
independent of the frame. 
 
     C. Specifying the Total Charge on the Human 
 
     We want to specify an exact amount of charge on the 
human.  We have stumbled upon a mixed boundary condition.  
We know VSKY and QHUMAN, but in order to use the basis 
models, we need to transform the mixed boundary condition 
into one in terms of just potential voltages.  In other words, we 
need to find the potential voltage of the human, VHUMAN.  We 
can compute VHUMAN as VHUMAN = (QHUMAN � VSKYQA)/QB.  
Note that this is specific to each frame and the potential 
voltage of the human might change from frame to frame. 
 
     D. Putting It All Together 
 
     We can put all of this together to investigate the behavior 
of the electric field in each of the three cases.  In the first case, 
we want to study the behavior when the human is grounded in 
 

 
Fig. 4. Line segment model of human 



 
 
a vertical ambient electric field.  We choose VHUMAN = 0 V and 
VSKY as just discussed.  In the second case, we want to study 
the behavior when the human is charged in no vertical ambient 
electric field.  We choose VHUMAN = QHUMAN/QB and VSKY = 0 
V.  In the third case, we want to study the behavior when the 
human is charged in a vertical ambient electric field.  We 
choose VHUMAN = (QHUMAN � VSKYQA)/QB and VSKY as discussed.  
After choosing VHUMAN and VSKY, we can use the basis models 
to compute the charge distribution, and then using the 
Principle of Superposition, we can compute the electric field. 
 

V. CONCLUSION 
 
We have created two extremely high quality dynamic models.  
In the first case study, we did this by creating and computing 
three basis models.  We then computed the electric field at the 
point of computation in each basis model.  We combined these 
to produce an analytic expression for the electric field at the 
point of computation as the line voltages oscillated over time. 
     The second case study was a bit trickier than the first.  
Unlike in the first case study, in the second case study, the 
geometry changed over time.  We were still able to use basis 
models to aid in the computation of the electric field.  Instead 
of creating and computing a collection of basis models for the 
entire dynamic model, we did this for each frame.  Using 
these, we were able to compute the charge distribution in each 
frame, and thus observe how the electric field behaved as the 
human walked. 
     The use of basis models provides significant savings in 
computation time when working with large dynamic models.  
Imagine we want to tackle the first case study without the use 
of basis models.  Suppose we break the dynamic model into p 
distinct frames.  We would have had to compute p right hand 
sides.  This would have required O(pn2) operations, where n is 
the number of elements in the model.  If p and n are in the ten 
thousands, then this amounts to teraflops of computation.  In 
comparison, using the basis models approach, only O(bn2 + 
pb) operations are required to compute the electric field at a 
given location, where b is the number of basis models.  This 
amounts to only gigaflops of computation and represents a 
computational savings of three orders of magnitude, reducing 
days of computation time into minutes, with no loss of 
accuracy. 
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